"Популярные лекции по математике"
"Популярные лекции по математике", выпуск 62. Три классические задачи на построение. Удвоение куба, трисекция угла, квадратура круга (Прасолов В. В.)
07.07.2008
Книга содержит историю и решения знаменитых задач древности, сыгравших важную роль в становлении математики. Изложение сопровождается интересными сведениями о развитии и методах математики в Древней Греции. Для широкого круга любителей математики.
0.46М, РУС.
Книга содержит историю и решения знаменитых задач древности, сыгравших важную роль в становлении математики. Изложение сопровождается интересными сведениями о развитии и методах математики в Древней Греции. Для широкого круга любителей математики.
0.46М, РУС.
"Популярные лекции по математике", выпуск 61. Преследование на плоскости (Петросян Л. А., Рихсиев Б. Б.)
07.07.2008
Содержит популярное изложение элементов теории дифференциальных игр и некоторых геометрических способов решения игр преследования на плоскости, базирующихся на использовании стратегии параллельного сближения (П-стратегия). Для конкретных задач преследования приведены и обоснованы оптимальные способы поведения преследующего и убегающего игроков. Для широкого круга читателей, включая школьников старших классов, интересующихся математикой.
1.17М, РУС.
Содержит популярное изложение элементов теории дифференциальных игр и некоторых геометрических способов решения игр преследования на плоскости, базирующихся на использовании стратегии параллельного сближения (П-стратегия). Для конкретных задач преследования приведены и обоснованы оптимальные способы поведения преследующего и убегающего игроков. Для широкого круга читателей, включая школьников старших классов, интересующихся математикой.
1.17М, РУС.
"Популярные лекции по математике", выпуск 60. Неподвижные точки (Шашкин Ю. А.)
07.07.2008
Теорема о неподвижной точке есть утверждение о том, что некоторое уравнение (или система уравнений) имеет решение. Доказываются топологические теоремы о неподвижных точках непрерывных отображений отрезка, квадрата, окружности и сферы. В доказательствах используются различные формы комбинаторно-геометрической леммы Шпернера и понятие степени отображения. Для школьников старших классов и студентов младших курсов вузов.
0.86М, РУС.
Теорема о неподвижной точке есть утверждение о том, что некоторое уравнение (или система уравнений) имеет решение. Доказываются топологические теоремы о неподвижных точках непрерывных отображений отрезка, квадрата, окружности и сферы. В доказательствах используются различные формы комбинаторно-геометрической леммы Шпернера и понятие степени отображения. Для школьников старших классов и студентов младших курсов вузов.
0.86М, РУС.
"Популярные лекции по математике", выпуск 59. Системы линейных уравнений (Скорняков Л. А.)
07.07.2008
Основная цель приводимых упражнений — дать читателю возможность проверить уровень усвоения изучаемого им материала. Идея, положенная в основу предлагаемой книги, использовалась при преподавании на отделении структурной лингвистики филологического факультета Московского университета. В брошюре содержится исчерпывающее изложение учения о системах линейных уравнений, опирающееся лишь на элементарные преобразования матриц. Книга предназначена для широкого круга читателей, включая школьников старших классов, интересующихся математикой.
0.41М, РУС.
Основная цель приводимых упражнений — дать читателю возможность проверить уровень усвоения изучаемого им материала. Идея, положенная в основу предлагаемой книги, использовалась при преподавании на отделении структурной лингвистики филологического факультета Московского университета. В брошюре содержится исчерпывающее изложение учения о системах линейных уравнений, опирающееся лишь на элементарные преобразования матриц. Книга предназначена для широкого круга читателей, включая школьников старших классов, интересующихся математикой.
0.41М, РУС.
"Популярные лекции по математике", выпуск 58. Эйлерова характеристика (Шашкин Ю. А.)
07.07.2008
В брошюре доказываются знаменитая формула Эйлера для выпуклых многогранников и ее аналоги для других фигур (плоскости, пространства, многоугольников). Эти формулы естественно подводят читателя к понятию эйлеровой характеристики. Даются два ее определения и доказывается их равносильность. Рассказывается о роли эйлеровой характеристики в различных геометрических задачах: о разбиении плоскости и пространства, о вычислении площадей, о покрытиях сферы. Брошюра рассчитана на школьников старших классов, студентов младших курсов и всех любителей математики.
0.95М, РУС.
В брошюре доказываются знаменитая формула Эйлера для выпуклых многогранников и ее аналоги для других фигур (плоскости, пространства, многоугольников). Эти формулы естественно подводят читателя к понятию эйлеровой характеристики. Даются два ее определения и доказывается их равносильность. Рассказывается о роли эйлеровой характеристики в различных геометрических задачах: о разбиении плоскости и пространства, о вычислении площадей, о покрытиях сферы. Брошюра рассчитана на школьников старших классов, студентов младших курсов и всех любителей математики.
0.95М, РУС.
"Популярные лекции по математике", выпуск 57. Теорема Гёделя о неполноте (Успенский В. А.)
07.07.2008
План брошюры таков. В § 1 формулируется теорема о неполноте и уточняется ее формулировка, в частности вводится центральное для данной брошюры понятие дедуктики. В § 2 излагаются на неформальном уровне начальные понятия теории алгоритмов, и на их основе формулируются первые критерии полноты и неполноты. В § 3 продолжается исследование критериев неполноты. В § 4 описывается язык формальной арифметики, дается точное определение понятия истинности утверждения этого языка и точная формулировка теоремы Гёделя о неполноте для формальной арифметики. В § 5 на основе дальнейшего развития тех представлений об алгоритмах, которые были описаны в § 2,— развития, закрепляемого в виде трех аксиом теории алгоритмов, — завершается доказательство теоремы о неполноте формальной арифметики.
1.52М, РУС.
План брошюры таков. В § 1 формулируется теорема о неполноте и уточняется ее формулировка, в частности вводится центральное для данной брошюры понятие дедуктики. В § 2 излагаются на неформальном уровне начальные понятия теории алгоритмов, и на их основе формулируются первые критерии полноты и неполноты. В § 3 продолжается исследование критериев неполноты. В § 4 описывается язык формальной арифметики, дается точное определение понятия истинности утверждения этого языка и точная формулировка теоремы Гёделя о неполноте для формальной арифметики. В § 5 на основе дальнейшего развития тех представлений об алгоритмах, которые были описаны в § 2,— развития, закрепляемого в виде трех аксиом теории алгоритмов, — завершается доказательство теоремы о неполноте формальной арифметики.
1.52М, РУС.
"Популярные лекции по математике", выпуск 56. Элементы программирования (Абрамов С. А.)
07.07.2008
Книга посвящена популярному изложению начальных сведений о программировании и программном обеспечении. Рассматриваются такие основные понятия, как алгоритм, алгоритмический язык, вычислительная машина, трансляция и операционная система. Для чтения книги достаточно знаний в объеме программы средней школы.
0.8М, РУС.
Книга посвящена популярному изложению начальных сведений о программировании и программном обеспечении. Рассматриваются такие основные понятия, как алгоритм, алгоритмический язык, вычислительная машина, трансляция и операционная система. Для чтения книги достаточно знаний в объеме программы средней школы.
0.8М, РУС.
"Популярные лекции по математике", выпуск 55. Упорядоченные множества (Беран Ладислав)
07.07.2008
Брошюра содержит популярное изложение важного для современной математики понятия частично упорядоченного множества. Рассмотрены понятия точной верхней и точной нижней граней, введены структуры (решетки), рассмотрены алгебраические свойства операций взятия точных граней, введены дистрибутивные структуры. Для учащихся старших классов средней школы и студентов младших курсов вузов.
0.59М, РУС.
Брошюра содержит популярное изложение важного для современной математики понятия частично упорядоченного множества. Рассмотрены понятия точной верхней и точной нижней граней, введены структуры (решетки), рассмотрены алгебраические свойства операций взятия точных граней, введены дистрибутивные структуры. Для учащихся старших классов средней школы и студентов младших курсов вузов.
0.59М, РУС.
"Популярные лекции по математике", выпуск 54. Машина Поста (Успенский В. А.)
07.07.2008
Машина Поста — это хотя и абстрактная (т. е. не существующая в арсенале действующей техники), но зато очень простая вычислительная машина. Она способна выполнять лишь самые элементарные действия, и потому ее описание и составление простейших программ может быть доступно ученикам начальной школы. Тем не менее на машине Поста можно запрограммировать — в известном смысле — любые алгоритмы. Изучение машины Поста можно рассматривать как начальный этап обучения теории алгоритмов и программированию.
1.81М, РУС.
Машина Поста — это хотя и абстрактная (т. е. не существующая в арсенале действующей техники), но зато очень простая вычислительная машина. Она способна выполнять лишь самые элементарные действия, и потому ее описание и составление простейших программ может быть доступно ученикам начальной школы. Тем не менее на машине Поста можно запрограммировать — в известном смысле — любые алгоритмы. Изучение машины Поста можно рассматривать как начальный этап обучения теории алгоритмов и программированию.
1.81М, РУС.
"Популярные лекции по математике", выпуск 53. Стереографическая проекция (Розенфельд Б. А., Сергеева Н. Д.)
07.07.2008
В брошюре рассказывается об одном часто применяемом виде проектирования сферы на плоскость, обладающем следующими замечательными свойствами: при этом проектировании углы между линиями на сфере изображаются равными им углами между линиями на плоскости, а круги на сфере изображаются кругами и прямыми на плоскости. В ней рассказывается также о применениях этого проектирования в астрономии и географии. В последнем разделе брошюры рассказывается об аналогичном проектировании плоскости Лобачевского на обычную плоскость. Брошюра рассчитана на школьников старших классов и студентов младших курсов вузов.
0.36М, РУС.
В брошюре рассказывается об одном часто применяемом виде проектирования сферы на плоскость, обладающем следующими замечательными свойствами: при этом проектировании углы между линиями на сфере изображаются равными им углами между линиями на плоскости, а круги на сфере изображаются кругами и прямыми на плоскости. В ней рассказывается также о применениях этого проектирования в астрономии и географии. В последнем разделе брошюры рассказывается об аналогичном проектировании плоскости Лобачевского на обычную плоскость. Брошюра рассчитана на школьников старших классов и студентов младших курсов вузов.
0.36М, РУС.
"Популярные лекции по математике", выпуск 52. Деление отрезка в данном отношении (Бескин Н. М.)
07.07.2008
В этой брошюре излагаются разные теории, к которым приводит углубленное изучение задачи о делении отрезка в данном отношении. Разбирая эту элементарную задачу и смежные вопросы, читатель совершит небольшое путешествие по математике, соприкоснется с аффинной и проективной геометрией и теорией групп, в большинстве случаев без упоминаний этих названии. Книга рассчитана на учащихся старших классов; изложение в основных частях доступно для школьников 7–8 классов.
0.53М, РУС.
В этой брошюре излагаются разные теории, к которым приводит углубленное изучение задачи о делении отрезка в данном отношении. Разбирая эту элементарную задачу и смежные вопросы, читатель совершит небольшое путешествие по математике, соприкоснется с аффинной и проективной геометрией и теорией групп, в большинстве случаев без упоминаний этих названии. Книга рассчитана на учащихся старших классов; изложение в основных частях доступно для школьников 7–8 классов.
0.53М, РУС.
"Популярные лекции по математике", выпуск 51. Изображения пространственных фигур (Бескин Н. М.)
07.07.2008
При изучении стереометрии приходится изображать на плоскости пространственные фигуры. Большинство школьников выполняют эти чертежи как попало, без всяких правил. В этой брошюре, рассчитанной на школьников старших классов, излагается теория изображения пространственных фигур на плоскости и приводятся примеры, соответствующие тематике школьного курса стереометрии.
0.86М, РУС.
При изучении стереометрии приходится изображать на плоскости пространственные фигуры. Большинство школьников выполняют эти чертежи как попало, без всяких правил. В этой брошюре, рассчитанной на школьников старших классов, излагается теория изображения пространственных фигур на плоскости и приводятся примеры, соответствующие тематике школьного курса стереометрии.
0.86М, РУС.
"Популярные лекции по математике", выпуск 50. Разбиение фигур на меньшие части (Болтянский В. Г., Гохберг И. Ц.)
07.07.2008
Эта книга посвящена нескольким связанным между собой вопросам нового интенсивно развивающегося направления в математике, которое носит название комбинаторной геометрии. Рассматриваемые здесь вопросы объединены одной общей идеей о разрезании фигуры на несколько меньших частей. Что такое «меньшая часть», можно понимать по-разному, в связи с чем и возникает несколько различных задач, рассматриваемых в этой книге. Все доказываемые здесь теоремы являются очень «молодыми»: самая «старая» из них была найдена польским математиком К. Борсуком примерно 40 лет назад. Эта теорема Борсука является тем стержнем, вокруг которого развертывается все дальнейшее изложение. Самой «молодой» теореме едва исполнился год. В книге популярно излагаются некоторые теоремы, относящиеся к недавно сформировавшемуся разд...
0.89М, РУС.
Эта книга посвящена нескольким связанным между собой вопросам нового интенсивно развивающегося направления в математике, которое носит название комбинаторной геометрии. Рассматриваемые здесь вопросы объединены одной общей идеей о разрезании фигуры на несколько меньших частей. Что такое «меньшая часть», можно понимать по-разному, в связи с чем и возникает несколько различных задач, рассматриваемых в этой книге. Все доказываемые здесь теоремы являются очень «молодыми»: самая «старая» из них была найдена польским математиком К. Борсуком примерно 40 лет назад. Эта теорема Борсука является тем стержнем, вокруг которого развертывается все дальнейшее изложение. Самой «молодой» теореме едва исполнился год. В книге популярно излагаются некоторые теоремы, относящиеся к недавно сформировавшемуся разд...
0.89М, РУС.
"Популярные лекции по математике", выпуск 49. Математический анализ в области рациональных функций (Шилов Г. Е.)
07.07.2008
Основными понятиями математического анализа являются понятия производной и интеграла. Эти понятия не являются элементарными; в любом систематическом курсе математического анализа им предшествуют теория вещественных чисел, теория пределов, теория непрерывных функций. Такая предварительная подготовка необходима, чтобы сформулировать понятия производной и интеграла в достаточно универсальном виде, с применениями к возможно более широкому классу функций. Но если ограничиться лишь сравнительно узким классом рациональных функций и использовать наглядный язык графиков, можно рассказать о производной и интеграле на небольшом числе страниц, притом достаточно аккуратно и вместе с тем содержательно. В этом и состоит задача настоящей брошюры, рассчитанной на широкий круг читателей; уровень знаний школ...
0.4М, РУС.
Основными понятиями математического анализа являются понятия производной и интеграла. Эти понятия не являются элементарными; в любом систематическом курсе математического анализа им предшествуют теория вещественных чисел, теория пределов, теория непрерывных функций. Такая предварительная подготовка необходима, чтобы сформулировать понятия производной и интеграла в достаточно универсальном виде, с применениями к возможно более широкому классу функций. Но если ограничиться лишь сравнительно узким классом рациональных функций и использовать наглядный язык графиков, можно рассказать о производной и интеграле на небольшом числе страниц, притом достаточно аккуратно и вместе с тем содержательно. В этом и состоит задача настоящей брошюры, рассчитанной на широкий круг читателей; уровень знаний школ...
0.4М, РУС.
"Популярные лекции по математике", выпуск 48. Системы линейных неравенств (Солодовников А. С.)
07.07.2008
В книге рассказывается о связи между системами линейных неравенств и выпуклыми многогранниками, дается описание множества всех решений системы линейных неравенств, изучаются вопросы совместности и несовместности; наконец, дается понятие о линейном программировании как об одной из глав теории систем линейных неравенств. В последнем параграфе дается доказательство теоремы двойственности линейного программирования. Книга рассчитана на школьников старших классов и всех любителей математики.
0.75М, РУС.
В книге рассказывается о связи между системами линейных неравенств и выпуклыми многогранниками, дается описание множества всех решений системы линейных неравенств, изучаются вопросы совместности и несовместности; наконец, дается понятие о линейном программировании как об одной из глав теории систем линейных неравенств. В последнем параграфе дается доказательство теоремы двойственности линейного программирования. Книга рассчитана на школьников старших классов и всех любителей математики.
0.75М, РУС.