Матанализ, стр. 5
Курс математического анализа. Т. 2 (Кудрявцев Л. Д.)
06.10.2007
Во втором томе содержится интегральное и дифференциальное исчисление многих переменных, теория дифференциальных отображений, теория рядов Фурье и преобразования Фурье, элементы функционального анализа и теория обобщенных функций. Предназначена студентам университетов физико-математических и инженерно-физических специальностей для углубленной математической подготовки.
7.86М, RUS.
Во втором томе содержится интегральное и дифференциальное исчисление многих переменных, теория дифференциальных отображений, теория рядов Фурье и преобразования Фурье, элементы функционального анализа и теория обобщенных функций. Предназначена студентам университетов физико-математических и инженерно-физических специальностей для углубленной математической подготовки.
7.86М, RUS.
Курс математического анализа. Т. 1 (Кудрявцев Л. Д.)
06.10.2007
Особое внимание в учебнике обращено на изложение качественных и аналитических методов, в нем нашли отражение и некоторые геометрические приложения анализа. В первом томе излагаются дифференциальное и интегральное исчисления функций одной переменой, простейшие сведения о функциях многих переменных и теория рядов. Предназначена студентам университетов физико-математических и инженерно-физических специальностей для углубленной математической подготовки.
7.48М, RUS.
Особое внимание в учебнике обращено на изложение качественных и аналитических методов, в нем нашли отражение и некоторые геометрические приложения анализа. В первом томе излагаются дифференциальное и интегральное исчисления функций одной переменой, простейшие сведения о функциях многих переменных и теория рядов. Предназначена студентам университетов физико-математических и инженерно-физических специальностей для углубленной математической подготовки.
7.48М, RUS.
Математический анализ: продолжение курса (Ильин В. А., Садовничий В. А.)
06.10.2007
Учебник представляет собой вторую часть трехтомного курса математического анализа для высших учебных заведений. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля, теория интегралов, зависящих от параметра, и теория рядов и интегралов Фурье.
3.05М, RUS.
Учебник представляет собой вторую часть трехтомного курса математического анализа для высших учебных заведений. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля, теория интегралов, зависящих от параметра, и теория рядов и интегралов Фурье.
3.05М, RUS.
Математический анализ: начальный курс (Ильин В. А., Садовничий В. А.)
06.10.2007
Учебник представляет собой первую часть трехтомного курса математического анализа для высших учебных заведений. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальные и интегральные исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих перменных и теорию неявных функций.
5.56М, RUS.
Учебник представляет собой первую часть трехтомного курса математического анализа для высших учебных заведений. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальные и интегральные исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих перменных и теорию неявных функций.
5.56М, RUS.
Курс анализа (Эрмит Ш.)
06.10.2007
Знаменитый курс Шарля Эрмита! Можно лишь приветствовать издание этого легендарного курса, который не должен служить учебником при первоначальном изучении Анализа, а должен служить пособием для тех, кто желает глубже изучить этот предмет и вникнуть в дальнейшее развитие этого предмета за последние сорок или пятьдесят лет.
4.35М, RUS.
Знаменитый курс Шарля Эрмита! Можно лишь приветствовать издание этого легендарного курса, который не должен служить учебником при первоначальном изучении Анализа, а должен служить пособием для тех, кто желает глубже изучить этот предмет и вникнуть в дальнейшее развитие этого предмета за последние сорок или пятьдесят лет.
4.35М, RUS.
Расходящиеся ряды (Харди Г.)
06.10.2007
Настоящая работа представляет собой монографию, посвященную суммированию расходящихся рядов и подробное исследование ряда конкретных методов суммирования (методов Чезаро, Абеля, Вороного, Эйлера и др.). Также здесь рассматриваются формулы суммирования Эйлера-Маклорена, суммирование рядов Фурье и нахождение значений определенных интегралов. Книга рассчитана на математиков - научных работников, аспирантов и студентов старших курсов.
4.29М, RUS.
Настоящая работа представляет собой монографию, посвященную суммированию расходящихся рядов и подробное исследование ряда конкретных методов суммирования (методов Чезаро, Абеля, Вороного, Эйлера и др.). Также здесь рассматриваются формулы суммирования Эйлера-Маклорена, суммирование рядов Фурье и нахождение значений определенных интегралов. Книга рассчитана на математиков - научных работников, аспирантов и студентов старших курсов.
4.29М, RUS.
Курс математического анализа. Т. 3. Ч. 2. Интегральные уравнения. Вариационное исчисление (Гурса Э.)
06.10.2007
Из главы про решение интегральных уравнений методом последовательных приближений: «На протяжении нашего курса мы уже несколько раз встречались с вопросом об интегральных уравнениях. Эта новая ветвь анализа очень быстро приобрела важное значение после работ Вольтерра и Фредгольма. Вольтерра занимался преимущественно изучением уравнений с переменными пределами; он рассматривал уравнение этого типа как предельный случай системы алгебраических уравнений, в которых число неизвестных неограниченно возрастает. Эта же идея была использована с очень большим успехом Фредгольмом в исследовании уравнений с постоянными пределами.»
3.77М, RUS.
Из главы про решение интегральных уравнений методом последовательных приближений: «На протяжении нашего курса мы уже несколько раз встречались с вопросом об интегральных уравнениях. Эта новая ветвь анализа очень быстро приобрела важное значение после работ Вольтерра и Фредгольма. Вольтерра занимался преимущественно изучением уравнений с переменными пределами; он рассматривал уравнение этого типа как предельный случай системы алгебраических уравнений, в которых число неизвестных неограниченно возрастает. Эта же идея была использована с очень большим успехом Фредгольмом в исследовании уравнений с постоянными пределами.»
3.77М, RUS.
Курс математического анализа. Т. 3. Ч. 1. Бесконечно близкие интегралы. Уравнения с частными производными (Гурса Э.)
06.10.2007
«Изучение функций, определенных диференциальным уравнением, во всей области их существования является задачей, полное разрешение которой невозможно при современном состоянии анализа. Однако, ограничившись изучением интегралов, бесконечно близких к уже известному интегралу, удалось получить чрезвычайно интересные результаты. Именно таким путем А. Пуанкаре в своих замечательных работах, посвященных „Задаче о трех телах", доказал существование бесконечного множества периодических решений и решений асимптотических к периодическим. Разыскание решений, бесконечно-близких к известному решению, привело его к системе линейные диференциальных уравнений, которые он называет уравнениями в вариациях, аналогичная система для уравнений с частными производными была ранее рассмотрена Г. Дарбу под назв...
3.2М, RUS.
«Изучение функций, определенных диференциальным уравнением, во всей области их существования является задачей, полное разрешение которой невозможно при современном состоянии анализа. Однако, ограничившись изучением интегралов, бесконечно близких к уже известному интегралу, удалось получить чрезвычайно интересные результаты. Именно таким путем А. Пуанкаре в своих замечательных работах, посвященных „Задаче о трех телах", доказал существование бесконечного множества периодических решений и решений асимптотических к периодическим. Разыскание решений, бесконечно-близких к известному решению, привело его к системе линейные диференциальных уравнений, которые он называет уравнениями в вариациях, аналогичная система для уравнений с частными производными была ранее рассмотрена Г. Дарбу под назв...
3.2М, RUS.
Курс математического анализа. Т. 2. Ч. 2. Дифференциальные уравнения (Гурса Э.)
06.10.2007
«Всякое диференциальное уравнение n-го порядка, которое получается от исключения постоянных, имеет бесконечное множество интегралов, зависящих от n произвольных параметров. Но совсем не очевидно, что всякое заданное диференциальное уравнение имеет интегралы. Это — основной вопрос, которым мы займемся в следующей главе. Здесь мы сначала рассмотрим несколько простых типов диференциальных уравнений первого порядка, интегрирование которых приводится к квадратурам. Существование их интегралов будет доказано самим способом их получения. Если с точки зрения чистой логики этот путь и можно критиковать, то, во всяком случае, он соответствует историческому порядку.»
3.1М, RUS.
«Всякое диференциальное уравнение n-го порядка, которое получается от исключения постоянных, имеет бесконечное множество интегралов, зависящих от n произвольных параметров. Но совсем не очевидно, что всякое заданное диференциальное уравнение имеет интегралы. Это — основной вопрос, которым мы займемся в следующей главе. Здесь мы сначала рассмотрим несколько простых типов диференциальных уравнений первого порядка, интегрирование которых приводится к квадратурам. Существование их интегралов будет доказано самим способом их получения. Если с точки зрения чистой логики этот путь и можно критиковать, то, во всяком случае, он соответствует историческому порядку.»
3.1М, RUS.
Курс математического анализа. Т. 2. Ч. 1. Теория аналитических функций (Гурса Э.)
06.10.2007
«255. Определения. Мнимым количеством, или комплексным количеством, называется всякое выражение вида а+bi, где а и b — какие-нибудь действительные числа, и і — особый символ, ввести который оказалось нужным, чтобы придать алгебре больше общности. В сущности, на комплексное количество можно смотреть как на систему двух действительных количеств, взятых в определенном порядке. Хотя выражения вида а+bi и не имеют сами по себе никакого конкретного значения, тем не менее, условились применять к ним обыкновенные правила алгебраического вычисления при условии заменять повсюду выражение і^2 через — 1.»
2.53М, RUS.
«255. Определения. Мнимым количеством, или комплексным количеством, называется всякое выражение вида а+bi, где а и b — какие-нибудь действительные числа, и і — особый символ, ввести который оказалось нужным, чтобы придать алгебре больше общности. В сущности, на комплексное количество можно смотреть как на систему двух действительных количеств, взятых в определенном порядке. Хотя выражения вида а+bi и не имеют сами по себе никакого конкретного значения, тем не менее, условились применять к ним обыкновенные правила алгебраического вычисления при условии заменять повсюду выражение і^2 через — 1.»
2.53М, RUS.
Курс математического анализа. Т. 1. Ч. 2. Разложение в ряды. Геометрические приложения (Гурса Э.)
06.10.2007
По объему это руководство является одним из наиболее полных в современной мировой математической литературе. В то же время излагаемые факты выбраны не по принципу энциклопедичности, выбор проникнут одной руководящей мыслью - дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки.
2.04М, RUS.
По объему это руководство является одним из наиболее полных в современной мировой математической литературе. В то же время излагаемые факты выбраны не по принципу энциклопедичности, выбор проникнут одной руководящей мыслью - дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки.
2.04М, RUS.
Курс математического анализа. Т. 1. Ч. 1. Производные и дифференциалы. Определенные интегралы. (Гурса Э.)
06.10.2007
Книга Э. Гурса «Курс математического анализа» уже приобрела у русских читателей заслуженную известность и признание. По объему это руководство является одним из наиболее полных в современной мировой математической литературе; в то же время излагаемые факты выбраны не по принципу энциклопедичности; выбор проникнут одной руководящей мыслью — дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки. Книга уже принесла большую пользу нашей университетской учащейся молодежи как пособие для углубления обычного курса анализа и для самообразования; можно смело сказать, что она много способствовала повышению уровня нашей математической культуры.
3.81М, RUS.
Книга Э. Гурса «Курс математического анализа» уже приобрела у русских читателей заслуженную известность и признание. По объему это руководство является одним из наиболее полных в современной мировой математической литературе; в то же время излагаемые факты выбраны не по принципу энциклопедичности; выбор проникнут одной руководящей мыслью — дать необходимый материал, на котором основывается разработка наиболее важных проблем современной науки. Книга уже принесла большую пользу нашей университетской учащейся молодежи как пособие для углубления обычного курса анализа и для самообразования; можно смело сказать, что она много способствовала повышению уровня нашей математической культуры.
3.81М, RUS.
Рекурсивный математический анализ (Гудстейн Р. Л.)
06.10.2007
Основу этой книги составляют две монографии Р. Л. Гудстейна: «Рекурсивная теория чисел» и «Рекурсивный анализ». Монография «Рекурсивная теория чисел» содержит систематическое и обстоятельное описание и исследование построенного Гудстейном исчисления п. р. равенств и некоторых модификаций этого исчисления; в ней описываются и изучаются также некоторые „надстройки" над исчислением равенств, использующие определенные расширения языка исчисления равенств и допускающие „переводы" в исчисление равенств; излагаются и некоторые традиционные разделы теории рекурсивных функций, а также некоторые разделы элементарной теории чисел, допускающие „вложение" в исчисление равенств. В монографии «Рекурсивная теория чисел» устанавливается также, что теорема о неполноте аксиоматизаций арифметик...
3.15М, RUS.
Основу этой книги составляют две монографии Р. Л. Гудстейна: «Рекурсивная теория чисел» и «Рекурсивный анализ». Монография «Рекурсивная теория чисел» содержит систематическое и обстоятельное описание и исследование построенного Гудстейном исчисления п. р. равенств и некоторых модификаций этого исчисления; в ней описываются и изучаются также некоторые „надстройки" над исчислением равенств, использующие определенные расширения языка исчисления равенств и допускающие „переводы" в исчисление равенств; излагаются и некоторые традиционные разделы теории рекурсивных функций, а также некоторые разделы элементарной теории чисел, допускающие „вложение" в исчисление равенств. В монографии «Рекурсивная теория чисел» устанавливается также, что теорема о неполноте аксиоматизаций арифметик...
3.15М, RUS.
Distributions and Fourier Transforms. Part 2 (Goncharova O.)
06.10.2007
Математическое хокку! Знаете ли вы что Косинус "пи пополам" Равняется ноль? :) Вот приблизительно об этом эта книга. Distributions and Fourier Transforms. Part 2 – все что Вы хотели знать о математике, но боялись спросить. Основные темы издания: Fourier Series and Fourier Transforms; Fourier – Transforms; Distribution Solutions to Differential Equations; Partial Differential Equations; Fourier Analysis.
0.19М, ENG.
Математическое хокку! Знаете ли вы что Косинус "пи пополам" Равняется ноль? :) Вот приблизительно об этом эта книга. Distributions and Fourier Transforms. Part 2 – все что Вы хотели знать о математике, но боялись спросить. Основные темы издания: Fourier Series and Fourier Transforms; Fourier – Transforms; Distribution Solutions to Differential Equations; Partial Differential Equations; Fourier Analysis.
0.19М, ENG.
Distributions and Fourier Transforms. Part 1 (Goncharova O.)
06.10.2007
The theory of distrubutions is usually presented in close connection with functional analysis, and the prehistory of that theory adds a very important element to the history of functional analysis. The problems or theories which shaped the prehistory of the theory of distributions are: 1. Heaviside's operational calculus; 2. Generalized derivatives and generalized solutions to differential equations; 3. Generalized Fourier transforms; 4. Improper functions; the a-functions and the partie finie; 5. The Rhams's currents. Why is the theory of distributions important? For what purpose was the theory of distributions originally created? Who invented distributions and when? You could find the answers and new questions in Lecture Notes.
0.22М, ENG.
The theory of distrubutions is usually presented in close connection with functional analysis, and the prehistory of that theory adds a very important element to the history of functional analysis. The problems or theories which shaped the prehistory of the theory of distributions are: 1. Heaviside's operational calculus; 2. Generalized derivatives and generalized solutions to differential equations; 3. Generalized Fourier transforms; 4. Improper functions; the a-functions and the partie finie; 5. The Rhams's currents. Why is the theory of distributions important? For what purpose was the theory of distributions originally created? Who invented distributions and when? You could find the answers and new questions in Lecture Notes.
0.22М, ENG.