Библиотечка "Квант". Выпуск 22. Задачи по математике. Алгебра и анализ
Автор(ы): | Башмаков М. И., Беккер Б. М., Гольховой В. М.
07.06.2010
|
Год изд.: | 1982 |
Описание: | В книге собраны задачи, представляющие основной круг идей школьного курса алгебры и начал математического анализа; специальные разделы посвящены комбинаторике и комплексным числам. Особенностью книги является группировка задач в серии: в каждой серии задачи связаны общей идеей решения и расположены в порядке возрастания трудности. Это расположение материала, а также указания к каждой серии, составляющие вторую часть книги, и вводные замечания к отдельным главам помогут читателю в самостоятельной работе и приобретении навыков математического мышления. Книга предназначена для школьников, преподавателей, лиц, занимающихся самообразованием, студентов педагогических вузов. |
Оглавление: |
Обложка книги.
Предисловие редактора [5]Предисловие [6] Глава 1. ВЕЩЕСТВЕННЫЕ ЧИСЛА [9] Глава 2. ЛИНЕЙНЫЕИ ДРОБНО-ЛИНЕЙНЫЕ ФУНКЦИИ [14] § 1. Линейные функции [14] § 2. Кусочно-линейные функции [15] § 3. Дробно-линейные функции [17] Глава 3. КВАДРАТНЫЕ ФУНКЦИИ [18] § 1. Параболы и окружности [18] § 2. Исследование квадратной функции [21] § 3. Среднее арифметическое и среднее геометрическое [24] § 4. Рациональные уравнения и неравенства [26] § 5. Иррациональные уравнения и неравенства [30] Глава 4. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ [31] § 1. Определение тригонометрических функций [31] § 2. Теоремы сложения [30] § 3. Обратные тригонометрические функции [40] § 4. Тригонометрические уравнения и неравенства [42] § 5. Исследование тригонометрических функций [44] Глава 5. ПРОИЗВОДНАЯ [45] § 1. Вычисление производных [45] § 2. Касательная [47] § 3. Монотонность. Экстремумы [49] Глава 6. ИНТЕГРАЛ [55] § 1. Вычисление интегралов [55] § 2. Приложения интеграла [60] Глава 7. ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ ФУНКЦИИ [64] § 1. Логарифмы [64] § 2. Показательные и логарифмические уравнения и неравенства [65] § 3. Натуральный логарифм [67] § 4. Простейшие дифференциальные уравнения [70] Глава 8. ПОСЛЕДОВАТЕЛЬНОСТИ [71] § 1. Математическая индукция [71] § 2. Рекуррентные соотношения [74] § 3. Суммирование [78] Глава 9. ЧИСЛОВЫЕ ФУНКЦИИ. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ [80] § 1. Числовые множества [80] § 2. Числовые функции [84] § 3. Предел последовательности [89] § 4. Предел функции [84] § 5. Свойства непрерывных функций [96] Глава 10. КОМБИНАТОРИКА [98] § 1. Комбинаторные рассуждения [98] § 2. Перебор вариантов [105] § 3. Биномиальные коэффициенты [110] Глава 11. КОМПЛЕКСНЫЕ ЧИСЛА [114] § 1. Действия над комплексными числами [114] § 2. Комплексная плоскость [116] § 3. Корни многочленов [120] Указания и решения [123] Ответы [175] Дополнительные задачи [188] |
Формат: | djvu |
Размер: | 2351251 байт |
Язык: | РУС |
Рейтинг: | 132 |
Открыть: | Ссылка (RU) |