High Perfomance Liquid Chromatography. Fundamental Principles and Practice

Автор(ы):Lough W.J.
06.10.2007
Год изд.:1996
Описание: Liquid chromatography (LC) is the term generally used to describe the separation of the components of a solution following differential migration of the solutes in a liquid flowing through a column packed with solid particles. It also applies to the more recent development of similar differential migration taking place in an open tube. Liquid chromatography is distinguished from the related techniques of gas chromatography (GC) and supercritical fluid chromatography (SFC) by the state of the mobile phase at the temperature and pressure of the system. Strictly speaking, thin-layer chromatography (TLC), paper chromatography (PC) and cen-trifugation chromatography (CC) are forms of liquid chromatography and the mechanisms of separation are the same. However, TLC and PC are generally termed planar chromatography because the separations are performed on stationary phases prepared as layers on flat surfaces. This book provides an introduction to the use and applications of a field of growing importance in routine chemical analysis. It follows a logical progression from basic principles to instrumental and applications. This book is written for advanced undergraduates and immediate postgraduates in analytic chemistry, pharmaceutical analysis, applied biochemistry, biotechnology and pharmacology. Как сделать жидкую хроматографию высокого качества? Автор книги знает ответ на этот вопрос.
Оглавление:
High Perfomance Liquid Chromatography. Fundamental Principles and Practice — обложка книги. Обложка книги.
1 Introduction W.J. LOUGH and I.W. WAINER [1]
  1.1 Analysis and chromatography [1]
  1.2 HPLC versus other analytical methods [3]
    1.2.1 Volumetric analysis [3]
    1.2.2 Ultraviolet spectrophotometry [4]
    1.2.3 Using chromatography to improve specificity [4]
  1.3 Historical development of chromatography [5]
  1.4 HPLC today 12 Bibliography [14]
2 Efficiency, retention, selectivity and resolution in chromatography C.M. RILEY [15]
  2.1 Introduction [15]
  2.2 Chromatographic mobility [16]
  2.3 Peak shape [16]
    2.3.1 Gaussian distribution [16]
    2.3.2 Peak area and peak height [17]
    2.3.3 Peak asymmetry [18]
  2.4 Retention relationships [20]
    2.4.1 Retention time (t(?)) [20]
    2.4.2 Retention volume (V(?)) [20]
    2.4.3 Relative-retention parameters [21]
  2.5 Band broadening and column efficiency [23]
    2.5.1 Number of theoretical plates (N) [23]
    2.5.2 Height equivalent to one theoretical plate (НЕТР, H) [23]
    2.5.3 Reduced plate height (h) [24]
    2.5.4 Relationships between column efficiency, analysis time and back pressure [24]
    2.5.5 Relationships between mobile-phase velocity and column efficiency [25]
    2.5.6 Extra-column contributions to band broadening [28]
  2.6 Separation [29]
    2.6.1 Selectivity (a) [29]
    2.6.2 Resolution (Rs) [31]
    2.6.3 Effect of peak asymmetry on column efficiency and separation [33]
Bibliography [35]
3 Modes of chromatography C.M. RILEY [36]
  3.1 Terminology [36]
  3.2 Chromatographic format [37]
  3.3 Models of retention [39]
  3.4 Choice of mode of chromatography [40]
  3.5 Normal-phase liquid chromatography [44
    3.5.1 Retention mechanisms and mobile phase ]effects in normal-phase liquid chromatography [44]
    3.5.2 Mobile phase optimisation in normal-phase liquid chromatography [47]
    3.5.3 Stationary phase effects in normal-phase liquid chromatography [49]
    3.5.4 The role of water in normal-phase liquid chromatography [51]
  3.6 Reversed-phased liquid chromatography [52]
    3.6.1 Retention mechanisms in reversed-phase liquid chromatography [52]
    3.6.2 Mobile phase effects in reversed-phase liquid chromatography [52]
    3.6.3 Stationary phase effects in reversed-phase liquid chromatography [57]
    3.6.4 Reversed-phase liquid chromatography of ionic compounds [61]
    3.6.5 Micellar chromatography [70]
  3.7 Ion-exchange chromatography [70]
    3.7.1 Stationary phase effects in ion-exchange chromatography [71]
    3.7.2 Retention mechanisms and mobile phase effects in ion-exchange chromatography [71]
  3.8 Size-exclusion chromatography [74]
    3.8.1 Separation mechanism in size-exclusion chromatography [74]
    3.8.2 Stationary phase and mobile phase effects in size-exclusion chromatography [76]
Bibliography [77]
4 Support materials and solvents P. HAMBLETON [79]
  4.1 Adsorption chromatography [79]
  4.2 Chemically bonded silica [83]
  4.3 Polymer packings [89]
  4.4 Porous graphitic carbon [91]
  4.5 Solvents for HPLC [91]
5 Instrumentation: pumps, injectors and column design T. NOCTOR [97]
  5.1 Introduction [97]
    5.1.1 The ideal HPLC pump [98]
  5.2 Types of HPLC pump [100]
    5.2.1 Constant pressure pumps [101]
    5.2.2 Constant flow pumps [102]
  5.3 Approaches to the reduction of flow pulsation [105]
    5.3.1 Mechanical or physical pulse damping [105]
    5.3.2 Electronic pulse compensation [106]
  5.4 The modern HPLC pump [106]
  5.5 Valve injectors [107]
  5.6 Column dimensions [109]
  5.7 Column inlet/outlet [111]
  5.8 Connecting tubing and unions [111]
  5.9 Conclusion [113]
6 Instrumentation: detectors and integrators D.K. LLOYD [114]
  6.1 Ideal detectors and real detectors [114]
  6.2 Detector performance criteria [116]
    6.2.1 Noise and drift [116]
    6.2.2 Sensitivity and limit of detection [118]
    6.2.3 Linear and dynamic range [119]
    6.2.4 Band broadening, detector flow cells and time-constant [119]
  6.3 The UV-visible absorbance detector [120]
    6.3.1 Principle of operation [120]
    6.3.2 Design of UV-visible absorbance detectors [120]
    6.3.3 Operation of UV-visible absorbance detectors [122]
    6.3.4 Spectrophotometric detectors [123]
    6.3.5 Troubleshooting [125]
  6.4 The fluorescence detector [126]
    6.4.1 Principle of operation [126]
    6.4.2 Design of a fluorescence detector [127]
    6.4.3 Fluorescence derivatisation [129]
    6.4.4 Operation of a fluorescence detector [130]
  6.5 The refractive index detector [131]
    6.5.1 Principle of operation and design of refractive index detectors [131]
    6.5.2 Operation of a refractive index detector [133]
  6.6 Electrochemical detectors [134]
    6.6.1 Principles of operation and design of electrochemical detectors [134]
    6.6.2 Operation of an electrochemical detector [136]
  6.7 Other detection methods [137]
    6.7.1 Mass spectrometry [138]
    6.7.2 Radioactivity detectors [139]
    6.7.3 Optical activity detectors [139]
  6.8 Integrators 140 Acknowledgements [142]
Bibliography [142]
7 Method development and quantitation W.J. LOUGH and l.W. WAINER [143]
  7.1 Method development [143]
    7.1.1 Introduction [143]
    7.1.2 Mode of LC and column selection [143]
    7.1.3 When alternative options must be explored [144]
    7.1.4 Chromatographic 'expertise' [147]
  7.2 Optimisation [148]
    7.2.1 Introduction [148]
    7.2.2 What is the optimum? [148]
    7.2.3 Local versus global maxima and consideration of experiments [151]
    7.2.4 Computer-aided optimisation [151]
  7.3 Relative assays [153]
    7.3.1 External standard method [153]
    7.3.2 Internal standard method [154]
  7.4 Method validation [156]
    7.4.1 Introduction [156]
    7.4.2 Specificity [156]
    7.4.3 Robustness [158]
    7.4.4 Linearity [158]
    7.4.5 Precision [158]
    7.4.6 Accuracy [159]
    7.4.7 Limit of detection [160]
    7.4.8 Limit of quantitation [161]
    7.4.9 Stability in solution [161]
    7.4.10 System suitability [162]
    7.4.11 Method transfer protocols [163]
  7.5 Types of quantitative method [163]
    7.5.1 Assignment of purity [163]
    7.5.2 Determination of impurities [164]
    7.5.3 Content determination [165]
Bibliography [167]
8 Sample preparation D. STEVENSON [168]
  8.1 Introduction [168]
  8.2 Sample preparation procedures [168]
    8.2.1 Solvent extraction [168]
    8.2.2 Solid-phase extraction [171]
    8.2.3 Soxhlet extraction [172]
    8.2.4 Protein precipitation and enzyme hydrolysis [173]
    8.2.5 Column switching [174]
    8.2.6 Dialysis [174]
    8.2.7 Techniques for the reduction of liquid volumes [174]
    8.2.8 Digestion of inorganics [176]
  8.3 Matrix properties [176]
    8.3.1 Water [176]
    8.3.2 Biological fluids [176]
    8.3.3 Milk [178]
    8.3.4 Soil [178]
    8.3.5 Crops and food [179]
    8.3.6 Air [179]
  8.4 Analyte properties [180]
  8.5 Examples of applications [180]
    8.5.1 Tamoxifen in plasma [180]
    8.5.2 Butylated hydroxytoluene in animal diet [181]
    8.5.3 Pesticides in water [182]
  8.6 Automation [182]
  8.7 Concluding remarks 183 Bibliography [185]
9 Polymer analysis A.J. HANDLEY [186]
  9.1 Introduction [186]
  9.2 Chromatography modes used for polymer analysis [186]
  9.3 Size exclusion chromatography [188]
    9.3.1 Introduction [188]
    9.3.2 Scope of the technique [188]
    9.3.3 Mechanism of separation [188]
    9.3.4 Experimental aspects of SEC [192]
    9.3.5 Applications in polymer industry [199]
  9.4 Other modes of chromatography [204]
Bibliography [204]
10 HPLC in biomedical and forensic analysis D. PERRETT and P. WHITE [205]
  10.1 Introduction [205]
  10.2 Biomedical analysis [205]
    10.2.1 Method development for biomedical HPLC [207]
    10.2.2 HPLC method development in biomedical analysis [208]
    10.2.3 The organisation of HPLC in a biomedical laboratory [208]
    10.2.4 Samples and sample preparation for biomedical HPLC [210]
    10.2.5 HPLC of ionic compounds [212]
    10.2.6 High sensitivity assays [213]
    10.2.7 Detection of weakly absorbing compounds [213]
    10.2.8 Typical applications of HPLC in biomedicine [214]
    10.2.9 Progress in biomedical HPLC [218]
  10.3 Forensic analysis [220]
    10.3.1 Analysis of drugs of abuse [221]
    10.3.2 Analysis of toxicological samples [226]
    10.3.3 Anions analysis [229]
    10.3.4 Dye analysis [230]
    10.3.5 Miscellaneous applications [232]
    10.3.6 Conclusions [233]
Bibliography [233]
11 Environmental analysis PJ. RENNIE [234]
  11.1 Introduction [234]
  11.2 HPLC mode [235]
  11.3 Sample preparation [235]
    11.3.1 Trace enrichment [235]
    11.3.2 Direct injection of aqueous samples [237]
    11.3.3 Liquid-liquid extraction [237]
    11.3.4 Derivatisation [238]
    11.3.5 Supercritical extraction [238]
  11.4 Choice of column [239]
  11.5 Pumping systems [239]
  11.6 Detectors [239]
    11.6.1 Fluorescence [240]
    11.6.2 UV detectors (including diode array) [240]
    11.6.3 Electrochemical detectors (amperometric and coulometric) [241]
  11.7 Sample introduction [242]
  11.8 Analytes [242]
    11.8.1 Organic analytes [242]
    11.8.2 Inorganic analytes [245]
  11.9 Miscellaneous [246]
  11.10 Suggested protocol [246]
  11.11 Conclusions [246]
Bibliography [247]
12 Food, organic and pharmaceutical applications W.J. LOUGH and I.W. WAINER [248]
  12.1 Introduction [248]
  12.2 Bulk substances [248]
    12.2.1 Monitoring reactions [248]
    12.2.2 Synthetic intermediates [249]
    12.2.3 Purity [251]
    12.2.4 Impurities [252]
    12.2.5 Isomer separations [253]
    12.2.6 Preparative isolation [258]
    12.2.7 Determination of physico-chemical parameters [261]
  12.3 Products or 'formulations' [263]
    12.3.1 Content determination [263]
    12.3.2 Dissolution studies [266]
    12.3.3 Stability studies [266]
  12.4 Conclusion [267]
Bibliography [269]
Index [270]
Формат: djvu
Размер:1762064 байт
Язык:ENG
Рейтинг: 161 Рейтинг
Открыть: Ссылка (RU)